AutoML and Domain Driven Design

By Shawn Deggans

Can Domain-Driven Design (DDD) improve AutoML implementations? | believe it can, as many
Machine Learning experiments involve the same problem-solving approaches used in software
development.

This article provides a brief overview of AutoML and no-code development. It then discusses the most
common approach to DDD for software development. With a specific use case in mind, I'll walk
through a scenario with AutoML as the tactical architecture. I'll explain how DDD should be used to
make strategic and tactical decisions regarding AutoML development.

By the end, you'll have a basic understanding of AutoML and DDD. You'll also understand how to

apply DDD as a framework to build the right ML solution for the domain problem with organizational
stakeholders.

Introduction to AutoML

AutoML is the process of automating the tasks of applying machine learning to real-world problems,
according to Wikipedia. So, what is the use case for no-code AutoML?

Many organizations struggle to move beyond the proof-of-concept stage. This can be due to a lack of
staff or data estate to support the efforts, the technical complexity of building out the infrastructure to
support machine learning in production, or an unclear definition of the business objectives they wish
to meet in the problem space.

AutoML helps reduce the risk of failure by providing cloud-native, low- or no-code tools to guide users
through the process of curating a dataset and deploying a model. No-code development has enabled
organizations to reach their goals without the need for experts. Popular platforms like Microsoft's
Power Platform, Zoho Creator, Airtable, BettyBlocks, and Salesforce have made no-code
development a regular part of an organization's IT toolset. This puts development tools closer to
domain experts, allowing organizations to meet their objectives without the usual IT project overhead.

Critics of the no-code movement point to limited capabilities compared to traditional software
development, dependency on vendor-specific systems, lack of control, poor scalability, and potential
security risks. However, some organizations may find these risks worth the opportunities and
solutions that no-code provides.

AutoML has both critics and champions. Organizations should be aware that AutoML comes with
tradeoffs alongside its benefits. Champions of AutoML will point to the following advantages over
traditional machine learning development processes:

e Accessibility: AutoML requires minimal knowledge of machine learning concepts and techniques,
so you don't need a data scientist or data engineer to guide you through the process.

e Collaboration: Platforms like AutoML, Databricks, and Amazon SafeMaker Studio enable data
collaboration in one platform, allowing teams to share data, models, and results with each other.

e Consistency: Automating the optimization of models reduces the chances of human error,
improving the consistency of machine learning model results.

e Customization: Platforms like Azure ML and Amazon SageMaker Studio make it easy to
customize machine learning environments and set specific requirements for models and
parameters.

e Efficiency: AutoML addresses faster ways to preprocess data, select the correct model, and tune
hyperparameters, reducing tedious and time-consuming tasks.

e Scalability: AutoML platforms are typically built on cloud architecture, making it easier to handle
large datasets and complex problems.

Critics of AutoML warn that using it instead of traditional machine learning could lead to dependence
on data quality, ethical concerns, lack of control, lack of interpretability, and lack of transparency.

Data quality is essential: many AutoML platforms require clean data with no issues. Without data
engineers or a data quality process, it's unlikely to have clean data. Poor data quality or noisy data
can result in inaccurate models.

Ethical considerations must also be taken into account. Algorithms may perpetuate existing biases
and discrimination if the data used to train them is unbalanced or biased.

AutoML's abstraction of the complexities of model creation is beneficial, but it also means users can't
control what happens during the pipeline process. If the algorithms developed from AutoML are
difficult to understand, organizations may not have insight into how decisions are being made, and
may unknowingly release models with flawed biases.

Without understanding how the model is making decisions, it's hard to fully grasp the strengths and
weaknesses of a model, leading to a lack of transparency.

Additionally, the models generated from AutoML may not be able to handle specialized problems or
reach the performance expected of modern ML models.

AutoML is a process of automating the tasks of applying machine learning to real-world problems. It
offers cloud native, low to no-code tools that help guide users from a curated dataset to a deployed
model. There are benefits and tradeoffs to using AutoML, such as accessibility, collaboration,
customization, scalability, and efficiency, but also potential ethical concerns, lack of control,
interpretability, transparency, and limited capabilities. Is there a way that we can apply a common,
and well-established framework that helps us better exploit the positive elements of AutoML while
reducing the negative side-effects brought up by its critiques? | believe we can, and | think Eric
Evans’ approach to creating a ubiquitous language for the software development team and the
domain experts within an organization is the best place to start.

A Quick Overview of Domain-Driven Design for Software
Development

DDD is a software development practice that focuses on understanding and modeling the complex
domains that systems operate in. It emphasizes the importance of gaining a deep understanding of
the problem domain and using this knowledge to guide system design. DDD is a flexible practice
based on principles and concepts rather than rigid rules. | use DDD because, as a developer, it
encourages me to think more about the domain problem and desired business outcomes than on the
technical approach to creating software and infrastructure. It's a lightweight way of building a shared
language with someone using a common language. The best example of this | found was in the book
Architecture Patterns with Python by O'Reilly Media.

Imagine that you, our unfortunate reader, were suddenly transported light years away from Earth
aboard an alien spaceship with your friends and family and had to figure out, from first principles, how

to navigate home.

In your first few days, you might just push buttons randomly, but soon you'd learn which buttons did
what, so that you could give one another instructions. “Press the red button near the flashing
doohickey and then throw that big lever over by the radar gizmo,” you might say.

Within a couple of weeks, you'd become more precise as you adopted words to describe the ship’s
functions: “Increase oxygen levels in cargo bay three” or “turn on the little thrusters.” After a few
months, you’d have adopted language for entire complex processes: “Start landing sequence” or
“prepare for warp.” This process would happen quite naturally, without any formal effort to build a
shared glossary.

https://learning.oreilly.com/library/view/architecture-patterns-
with/9781492052197/ch01.html#:-:text=Imagine that you,a shared glossary.

| love that this example shows the natural process of discovery and how it creates a shared
understanding of the spaceship's behavior. DDD is a big topic, so | won't try to cover it all here. The
important thing to understand is that DDD is meant to be practiced. It's a process based on
discussions and drives towards building deep, shared knowledge about a specific problem.

Why do | believe that someone wishing to learn machine learning, even as an AutoML user, should
begin their own DDD practice? | would point to these key concepts of DDD:

1. Bounded context: Isolate and well-define a specific part of the problem domain to manage
complexity and prevent misunderstandings between different parts of the domain model. Avoid
"boiling the ocean" and taking on more work than can be managed. Bounded context can
represent a team, line of business, department, set of related services, data elements, or
parameters.

2. Domain expert: Someone with a deep understanding of the problem domain who can provide
valuable insights and guidance to the development team. Without access to domain expert, it's
difficult to build a solution of real value.

3. Domain model: Representation of the key concepts and relationships in the problem domain,
expressed in a shared language. Not an exact replica of reality, but captures the essence of what
makes the organization's model unique.

4. Event storming: Collaborative technique to identify and model key events and processes in the
problem domain. Uncovers hidden complexity and ensures the domain model reflects the needs
of the business.

5. Ubiquitous language: Shared language used by all members of the development team to
communicate about the problem domain. Ensures everyone is using the same terminology and
concepts.

Why would an AutoML developer want to know DDD?

DDD encourages the use of domain-specific language and concepts in modeling, which can make it
easier for domain experts to understand and interpret the results of the models. It also emphasizes
the importance of understanding the business context and domain-specific knowledge when solving
problems. This can help AutoML developers to build more accurate and effective models.

DDD provides a common language and set of concepts that can help data scientists communicate
more effectively with domain experts and other stakeholders. It also emphasizes the importance of
designing solutions that are maintainable and adaptable over time, helping AutoML developers to
build models that are more robust and resilient to change.

Finally, DDD encourages collaboration between domain experts and technical experts, which can
help AutoML developers to better understand the problem they are trying to solve and the impact their
solutions will have on the business.

A Use Case: A Machine Learning Model to Diagnose the Flu

Y
d \

1

https://learning.oreilly.com/library/view/architecture-patterns-with/9781492052197/ch01.html

~

-‘i\-.m- .(g

I have explored how AutoML and Domain-Driven Design can be used together as a framework to help
AutoML developers. Our aim is to take advantage of AutoML's positive aspects while minimizing its
negative tradeoffs. | have discussed why an AutoML developer might choose to use DDD as a
framework, so in this section | will explain how to implement the process.

| have chosen a relatively simple use case, one that has been extensively studied in terms of building
classifiers for the problem domain. Therefore, | will take a basic approach to a non-novel problem,
focusing on the DDD process rather than the complexity of the problem domain.

Using domain-driven design (DDD) to build a machine learning model to help diagnose patients with
the flu could involve the following steps:

1. Identify the bounded context: The first step would be to identify the bounded context, or specific
part of the problem domain, that the model will operate in. In this case, the bounded context
might be the process of diagnosing patients with the flu. A conversation with the people making
the request for a solution can help establish a scope and general goals. Additionally, tools like
Simon Wardley’s Wardley Mapping and Teresa Torres’ Opportunity Solution Trees can uncover
what type of business outcomes the organization is attempting to address and the service or
supply chain associated with meeting customer needs. Questions such as what the requesters
expected outcomes are from a solution that can diagnose patients who have the flu, if it will
lessen time in a waiting room, or if it will make patient intake faster should be asked.

2. Identify the domain experts: The development team should then identify domain experts who
have a deep understanding of the problem domain and can provide valuable insights and
guidance. These domain experts might include medical professionals who are experienced in
diagnosing and treating patients with the flu. The goal is to establish clarity around vocabulary,
expected behaviors, and begin to build a vision for the existing strategic, business systems.

3. Define the ubiquitous language: The development team should work with the domain experts to
define a shared language, or ubiquitous language, that everyone can use to communicate about
the problem domain. This might include defining key terms and concepts related to the flu and its
symptoms.

4. Conduct event storming: The development team should use a collaborative technique called
event storming to identify and model the key events and processes involved in diagnosing
patients with the flu. This might include identifying the symptoms that are most indicative of the
flu and the tests that are typically used to diagnose it. A large whiteboard or a shared online
collaboration tool can be used to define domain events, commands, policies, and other important
elements that make up a working system.

5. Build the domain model: Using the insights and knowledge gained through event storming, the
development team should build a domain model that represents the key concepts and
relationships in the problem domain. This might include building a model that predicts the
likelihood of a patient having the flu based on their symptoms and test results.

6. Use AutoML to build and tune the machine learning model: The development team should then
use automated machine learning (AutoML) to build and tune the machine learning model. This
might involve selecting an appropriate model type, preprocessing the data, and optimizing the
hyperparameters. The AutoML user should build a better understanding of the type of settings
they want to establish for their model. The type of model should address the primary problem

type uncovered during the DDD process. If it wasn't, the AutoML developer should return to
additional sessions with the domain experts to tune and solidify the design of the solution.

Overall, by applying DDD principles to the development of the machine learning model, the
development team can create a model that is closely aligned with the business needs and can evolve
and adapt over time. DDD is not just a process to follow when planning the project, but one to
continue throughout the development and deployment of the solution. Involve domain experts in the
ML model's lifecycle as long as it creates value.

DDD and AutoML

AutoML is a process of automating machine learning tasks to solve real-world problems. It offers
cloud-native, low- to no-code tools to guide users from a curated dataset to a deployed model.
Benefits include accessibility, collaboration, customization, scalability, and efficiency. However, there
are potential ethical concerns, lack of control, interpretability, transparency, and limited capabilities.

Domain-Driven Design (DDD) is a software development practice that focuses on understanding and
modeling complex organization domains. It encourages developers to think more about the domain
problem and desired business outcomes than the tactical approach. DDD is a flexible practice built on
principles and concepts, not hard rules. It is a lightweight method of building a common language with
domain experts.

Does this mean DDD is right for every AutoML endeavor? Not necessarily. When experimenting with
data and working with light predictions, bringing the framework of DDD is likely overkill. But when
working with complex domains, like healthcare or modern manufacturing, involving domain experts is
common. DDD is useful for conducting valuable discussions, capturing important vocabulary, and
uncovering unique domain behaviors. It is a tool to include in the professional's toolbox, even when
working with low- or no-code solutions. Understanding how the organization will use the solution to
meet desired outcomes is essential for success. DDD helps bridge the gap between desired
outcomes and machine learning models.

