
AutoML and Domain Driven Design
By Shawn Deggans

Can Domain-Driven Design (DDD) improve AutoML implementations? I believe it can, as many 
Machine Learning experiments involve the same problem-solving approaches used in software 
development.

This article provides a brief overview of AutoML and no-code development. It then discusses the most 
common approach to DDD for software development. With a specific use case in mind, I'll walk 
through a scenario with AutoML as the tactical architecture. I'll explain how DDD should be used to 
make strategic and tactical decisions regarding AutoML development.

By the end, you'll have a basic understanding of AutoML and DDD. You'll also understand how to 
apply DDD as a framework to build the right ML solution for the domain problem with organizational 
stakeholders.

Introduction to AutoML



AutoML is the process of automating the tasks of applying machine learning to real-world problems, 
according to Wikipedia. So, what is the use case for no-code AutoML?

Many organizations struggle to move beyond the proof-of-concept stage. This can be due to a lack of 
staff or data estate to support the efforts, the technical complexity of building out the infrastructure to 
support machine learning in production, or an unclear definition of the business objectives they wish 
to meet in the problem space.

AutoML helps reduce the risk of failure by providing cloud-native, low- or no-code tools to guide users 
through the process of curating a dataset and deploying a model. No-code development has enabled 
organizations to reach their goals without the need for experts. Popular platforms like Microsoft's 
Power Platform, Zoho Creator, Airtable, BettyBlocks, and Salesforce have made no-code 
development a regular part of an organization's IT toolset. This puts development tools closer to 
domain experts, allowing organizations to meet their objectives without the usual IT project overhead.

Critics of the no-code movement point to limited capabilities compared to traditional software 
development, dependency on vendor-specific systems, lack of control, poor scalability, and potential 
security risks. However, some organizations may find these risks worth the opportunities and 
solutions that no-code provides.

AutoML has both critics and champions. Organizations should be aware that AutoML comes with 
tradeoffs alongside its benefits. Champions of AutoML will point to the following advantages over 
traditional machine learning development processes:

Critics of AutoML warn that using it instead of traditional machine learning could lead to dependence 
on data quality, ethical concerns, lack of control, lack of interpretability, and lack of transparency.

Data quality is essential: many AutoML platforms require clean data with no issues. Without data 
engineers or a data quality process, it's unlikely to have clean data. Poor data quality or noisy data 
can result in inaccurate models.

Ethical considerations must also be taken into account. Algorithms may perpetuate existing biases 
and discrimination if the data used to train them is unbalanced or biased.

Accessibility: AutoML requires minimal knowledge of machine learning concepts and techniques, 
so you don't need a data scientist or data engineer to guide you through the process.
Collaboration: Platforms like AutoML, Databricks, and Amazon SafeMaker Studio enable data 
collaboration in one platform, allowing teams to share data, models, and results with each other.
Consistency: Automating the optimization of models reduces the chances of human error, 
improving the consistency of machine learning model results.
Customization: Platforms like Azure ML and Amazon SageMaker Studio make it easy to 
customize machine learning environments and set specific requirements for models and 
parameters.
Efficiency: AutoML addresses faster ways to preprocess data, select the correct model, and tune 
hyperparameters, reducing tedious and time-consuming tasks.
Scalability: AutoML platforms are typically built on cloud architecture, making it easier to handle 
large datasets and complex problems.



AutoML's abstraction of the complexities of model creation is beneficial, but it also means users can't 
control what happens during the pipeline process. If the algorithms developed from AutoML are 
difficult to understand, organizations may not have insight into how decisions are being made, and 
may unknowingly release models with flawed biases.

Without understanding how the model is making decisions, it's hard to fully grasp the strengths and 
weaknesses of a model, leading to a lack of transparency.

Additionally, the models generated from AutoML may not be able to handle specialized problems or 
reach the performance expected of modern ML models.

AutoML is a process of automating the tasks of applying machine learning to real-world problems. It 
offers cloud native, low to no-code tools that help guide users from a curated dataset to a deployed 
model. There are benefits and tradeoffs to using AutoML, such as accessibility, collaboration, 
customization, scalability, and efficiency, but also potential ethical concerns, lack of control, 
interpretability, transparency, and limited capabilities. Is there a way that we can apply a common, 
and well-established framework that helps us better exploit the positive elements of AutoML while 
reducing the negative side-effects brought up by its critiques? I believe we can, and I think Eric 
Evans’ approach to creating a ubiquitous language for the software development team and the 
domain experts within an organization is the best place to start.

A Quick Overview of Domain-Driven Design for Software 
Development

DDD is a software development practice that focuses on understanding and modeling the complex 
domains that systems operate in. It emphasizes the importance of gaining a deep understanding of 
the problem domain and using this knowledge to guide system design. DDD is a flexible practice 
based on principles and concepts rather than rigid rules. I use DDD because, as a developer, it 
encourages me to think more about the domain problem and desired business outcomes than on the 
technical approach to creating software and infrastructure. It's a lightweight way of building a shared 
language with someone using a common language. The best example of this I found was in the book 
Architecture Patterns with Python by O'Reilly Media.

Imagine that you, our unfortunate reader, were suddenly transported light years away from Earth 
aboard an alien spaceship with your friends and family and had to figure out, from first principles, how 



to navigate home.

In your first few days, you might just push buttons randomly, but soon you’d learn which buttons did 
what, so that you could give one another instructions. “Press the red button near the flashing 
doohickey and then throw that big lever over by the radar gizmo,” you might say.

Within a couple of weeks, you’d become more precise as you adopted words to describe the ship’s 
functions: “Increase oxygen levels in cargo bay three” or “turn on the little thrusters.” After a few 
months, you’d have adopted language for entire complex processes: “Start landing sequence” or 
“prepare for warp.” This process would happen quite naturally, without any formal effort to build a 
shared glossary.

https://learning.oreilly.com/library/view/architecture-patterns-
with/9781492052197/ch01.html#:-:text=Imagine that you,a shared glossary.

I love that this example shows the natural process of discovery and how it creates a shared 
understanding of the spaceship's behavior. DDD is a big topic, so I won't try to cover it all here. The 
important thing to understand is that DDD is meant to be practiced. It's a process based on 
discussions and drives towards building deep, shared knowledge about a specific problem.

Why do I believe that someone wishing to learn machine learning, even as an AutoML user, should 
begin their own DDD practice? I would point to these key concepts of DDD:

Why would an AutoML developer want to know DDD?

DDD encourages the use of domain-specific language and concepts in modeling, which can make it 
easier for domain experts to understand and interpret the results of the models. It also emphasizes 
the importance of understanding the business context and domain-specific knowledge when solving 
problems. This can help AutoML developers to build more accurate and effective models.

DDD provides a common language and set of concepts that can help data scientists communicate 
more effectively with domain experts and other stakeholders. It also emphasizes the importance of 
designing solutions that are maintainable and adaptable over time, helping AutoML developers to 
build models that are more robust and resilient to change.

Finally, DDD encourages collaboration between domain experts and technical experts, which can 
help AutoML developers to better understand the problem they are trying to solve and the impact their 
solutions will have on the business.

A Use Case: A Machine Learning Model to Diagnose the Flu

Bounded context: Isolate and well-define a specific part of the problem domain to manage 
complexity and prevent misunderstandings between different parts of the domain model. Avoid 
"boiling the ocean" and taking on more work than can be managed. Bounded context can 
represent a team, line of business, department, set of related services, data elements, or 
parameters.

1. 

Domain expert: Someone with a deep understanding of the problem domain who can provide 
valuable insights and guidance to the development team. Without access to domain expert, it’s 
difficult to build a solution of real value.

2. 

Domain model: Representation of the key concepts and relationships in the problem domain, 
expressed in a shared language. Not an exact replica of reality, but captures the essence of what 
makes the organization's model unique.

3. 

Event storming: Collaborative technique to identify and model key events and processes in the 
problem domain. Uncovers hidden complexity and ensures the domain model reflects the needs 
of the business.

4. 

Ubiquitous language: Shared language used by all members of the development team to 
communicate about the problem domain. Ensures everyone is using the same terminology and 
concepts.

5. 

https://learning.oreilly.com/library/view/architecture-patterns-with/9781492052197/ch01.html


I have explored how AutoML and Domain-Driven Design can be used together as a framework to help 
AutoML developers. Our aim is to take advantage of AutoML's positive aspects while minimizing its 
negative tradeoffs. I have discussed why an AutoML developer might choose to use DDD as a 
framework, so in this section I will explain how to implement the process.

I have chosen a relatively simple use case, one that has been extensively studied in terms of building 
classifiers for the problem domain. Therefore, I will take a basic approach to a non-novel problem, 
focusing on the DDD process rather than the complexity of the problem domain.

Using domain-driven design (DDD) to build a machine learning model to help diagnose patients with 
the flu could involve the following steps:

Identify the bounded context: The first step would be to identify the bounded context, or specific 
part of the problem domain, that the model will operate in. In this case, the bounded context 
might be the process of diagnosing patients with the flu. A conversation with the people making 
the request for a solution can help establish a scope and general goals. Additionally, tools like 
Simon Wardley’s Wardley Mapping and Teresa Torres’ Opportunity Solution Trees can uncover 
what type of business outcomes the organization is attempting to address and the service or 
supply chain associated with meeting customer needs. Questions such as what the requesters 
expected outcomes are from a solution that can diagnose patients who have the flu, if it will 
lessen time in a waiting room, or if it will make patient intake faster should be asked.

1. 

Identify the domain experts: The development team should then identify domain experts who 
have a deep understanding of the problem domain and can provide valuable insights and 
guidance. These domain experts might include medical professionals who are experienced in 
diagnosing and treating patients with the flu. The goal is to establish clarity around vocabulary, 
expected behaviors, and begin to build a vision for the existing strategic, business systems.

2. 

Define the ubiquitous language: The development team should work with the domain experts to 
define a shared language, or ubiquitous language, that everyone can use to communicate about 
the problem domain. This might include defining key terms and concepts related to the flu and its 
symptoms.

3. 

Conduct event storming: The development team should use a collaborative technique called 
event storming to identify and model the key events and processes involved in diagnosing 
patients with the flu. This might include identifying the symptoms that are most indicative of the 
flu and the tests that are typically used to diagnose it. A large whiteboard or a shared online 
collaboration tool can be used to define domain events, commands, policies, and other important 
elements that make up a working system.

4. 

Build the domain model: Using the insights and knowledge gained through event storming, the 
development team should build a domain model that represents the key concepts and 
relationships in the problem domain. This might include building a model that predicts the 
likelihood of a patient having the flu based on their symptoms and test results.

5. 

Use AutoML to build and tune the machine learning model: The development team should then 
use automated machine learning (AutoML) to build and tune the machine learning model. This 
might involve selecting an appropriate model type, preprocessing the data, and optimizing the 
hyperparameters. The AutoML user should build a better understanding of the type of settings 
they want to establish for their model. The type of model should address the primary problem 

6. 



Overall, by applying DDD principles to the development of the machine learning model, the 
development team can create a model that is closely aligned with the business needs and can evolve 
and adapt over time. DDD is not just a process to follow when planning the project, but one to 
continue throughout the development and deployment of the solution. Involve domain experts in the 
ML model's lifecycle as long as it creates value.

DDD and AutoML

AutoML is a process of automating machine learning tasks to solve real-world problems. It offers 
cloud-native, low- to no-code tools to guide users from a curated dataset to a deployed model. 
Benefits include accessibility, collaboration, customization, scalability, and efficiency. However, there 
are potential ethical concerns, lack of control, interpretability, transparency, and limited capabilities.

Domain-Driven Design (DDD) is a software development practice that focuses on understanding and 
modeling complex organization domains. It encourages developers to think more about the domain 
problem and desired business outcomes than the tactical approach. DDD is a flexible practice built on 
principles and concepts, not hard rules. It is a lightweight method of building a common language with 
domain experts.

Does this mean DDD is right for every AutoML endeavor? Not necessarily. When experimenting with 
data and working with light predictions, bringing the framework of DDD is likely overkill. But when 
working with complex domains, like healthcare or modern manufacturing, involving domain experts is 
common. DDD is useful for conducting valuable discussions, capturing important vocabulary, and 
uncovering unique domain behaviors. It is a tool to include in the professional's toolbox, even when 
working with low- or no-code solutions. Understanding how the organization will use the solution to 
meet desired outcomes is essential for success. DDD helps bridge the gap between desired 
outcomes and machine learning models.

type uncovered during the DDD process. If it wasn’t, the AutoML developer should return to 
additional sessions with the domain experts to tune and solidify the design of the solution.


